Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

نویسندگان

  • Jason Xu
  • Peter Guttorp
  • Midori Kato-Maeda
  • Vladimir N Minin
چکیده

Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and computationally efficient likelihood–based estimation for discretely observed diffusion processes

The objective of this paper is to present a novel methodology for likelihood-based inference for discretely observed diffusions. We propose Monte Carlo methods, which build on recent advances on the exact simulation of diffusions, for performing maximum likelihood and Bayesian estimation.

متن کامل

Web-based Supplementary Materials for Likelihood-Based Inference for Discretely Observed Birth-Shift-Death and Multi-Type Branching Processes

Here we derive and solve the Kolmogorov backward equations of the two-type branching process necessary for evaluating the generating functions whose coefficients yield transition probabilities. See [Bailey, 1990] for an exposition on this solution technique. Our two-type branching process is represent by a vector (X1(t), X2(t)) that denotes the numbers of particles of two types at time t. Recal...

متن کامل

Birth(death)/birth-death processes and their computable transition probabilities with statistical applications

Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computation...

متن کامل

Design and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints

Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...

متن کامل

Statistical inference for discretely observed Markov jump processes

Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Mar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrics

دوره 71 4  شماره 

صفحات  -

تاریخ انتشار 2015